

DPP - 5 \& 6 (EMI)

Video Solution on Website :-

https://physicsaholics.com/home/courseDetails/104

Video Solution on YouTube:-
 https://youtu.be/qy_2yWS-yzY

Written Solution on Website:-
 https://physicsaholics.com/note/notesDetalis/65

Q 1. Mutual inductance of two coils is M . First coil has constant current i and second has no current. If current in first coil dies out in very short time, magnitude of charge which will move in second coil is a (resistance of each coil is R)
(a) $\frac{M i}{R}$
(b) $\frac{2 M i}{R}$
(c) $\frac{M i}{2 R}$
(d) None of these

Q 2. Two concentric and coplanar circular coils have radii a and $b(\gg a)$ as shown in figure. Resistance of the inner coil is R. Current in the outer coil is increased from 0 to i, then the total charge circulating the inner coil is:

(a) $\frac{\mu_{0} i a^{2}}{2 R b}$
(b) $\frac{\mu_{0} i a b}{2 R}$
(c) $\frac{\mu_{0} i \pi b^{2}}{2 R a}$
(d) $\frac{\mu_{0} i b}{2 \pi R}$

Q 3. A small square loop of wire of side I is placed inside a large square loop of wire of side L(L>> II. The loops are coplanar and their centres coincide. The mutual inductance of the system is proportional to:
(a) l / L
(b) l^{2} / L
(c) L / l
(d) L^{2} / l

Q 4. Two circular coils can be arranged in any of the three situations shown in the figure. Their mutual inductance will be:

(a)

(b)

(c)
(a) maximum In situation (a)
(b) maximum in situation (b)
(c) maximum in situation (c)
(d) the same in all situations

Q 5. A short solenoid of length l_{1}, cross sectional area A_{1}, and no of turns per unit length n_{1} is placed at centre of long solenoid of length l_{2}, cross sectional area A_{2}, and no of turns per unit length n_{2}. Mutual inductance of solenoid will be

(a) $\mu_{0} A_{1} l_{1} n_{1} n_{2}$
(b) $\mu_{0} A_{2} l_{2} n_{1} n_{2}$
(c) $\mu_{0} A_{1} l_{2} n_{1} n_{2}$
(d) $\mu_{0} A_{2} l_{1} n_{1} n_{2}$

Q 6. Two coils, $1 \& 2$, have a mutual inductance $=M$ and resistances R each. A current flows in coil 1 , which varies with time as; $l_{1}=k t^{2}$, where k is a constant and ' t^{\prime} is time. Find the total charge that has flown through coil 2 , between $t=0$ and $t=T$.
(a) $2 \mathrm{kMT}^{2} / \mathrm{R}$
(b) $k M T^{2} / 2 R$
(c) $4 \mathrm{kMT}^{2} / \mathrm{R}$
(d) $\mathrm{kMT}^{2} / \mathrm{R}$

Q 7. Two coaxial solenoids are made by winding thin insulated wire over a pipe of cross-sectional area $A=10 \mathrm{~cm}^{2}$ and length $=20 \mathrm{~cm}$. If one of the solenoids has 300 turns and the other 400 turns, their mutual inductance is ($\mu_{0}=4 \pi \times 10^{-7} \mathrm{TmA}{ }^{-1}$)
(a) $2.4 \pi \times 10^{-5} \mathrm{H}$
(b) $4.8 \pi \times 10^{-4} \mathrm{H}$
(c) $4.8 \pi \times 10^{-5} \mathrm{H}$
(d) $2.4 \pi \times 10^{-4} \mathrm{H}$

Q 8. If we increase no of turns in a coil to n times, self inductance will increase to
(a) n times
(b) n^{2} times
(c) n^{3} times
(d) n^{4} times

Q 9. Two identical solenoids are placed coaxially at large separation r from each other. Each solenoid has no of turns per unit length n and length I and cross sectional area A . mutual inductance of solenoids is
(a) $\frac{\mu_{0} n^{2} l^{2} A^{2}}{2 \pi r^{3}}$
(b) $\frac{\mu_{0} n^{2} l^{4} A^{2}}{2 \pi r^{2}}$
(c) $\frac{\mu_{0} n^{2} l^{2} A^{2}}{4 \pi r^{3}}$
(d) $\frac{\mu_{0} n^{2} l^{2} A^{2}}{2 \pi r^{2}}$

Q 10. Two coils are at fixed locations. When coil 1 has no current and the current in coil 2 increases at the rate $15.0 \mathrm{~A} / \mathrm{s}$ the e.m.f. in coil 1 in 25.0 mV , when coil 2 has no current and coil 1 has a current of 3.6 A , flux linkage in coil 2 is-
(a) 16 mWb
(b) 10 mWb
(c) 4 mWb
(d) 6 mWb

Q 11. A long straight wire is placed along the axis of a circular ring of radius R. The mutual inductance of this system is-
(a) $\frac{\mu_{0} R}{2}$
(b) $\frac{\pi \mu_{0} R}{2}$
(c) $\frac{\mu_{0} R}{4}$
(d) 0

Q 12. A solenoid of self inductance L is devided in to two equal parts to make two solenoids . Self inductance of one part
(a) is equal to $L / 2$
(b) is less than L/2
(c) is greater than $\mathrm{L} / 2$
(d) None of these

Answer Key

Q. 1 a	Q. 2 a	Q. 3 b	Q. 4 a	Q. 5 a
Q. 6 d	Q. 7 d	Q. 8 b	Q. 9 a	Q. 10 d
Q. 11 d	Q. 12 b			

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI ₹56,000

18 months

No cost EMI

12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
Study Planner

To be paid as a one-time payment View all plans
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP- 5 \& 6 EMI- Mutual Induction, Self Inductance of Solenoid, relation between mutual induction and self induction By Physicsaholics Team
Q.1) Mutual inductance of two coils is M. First coil has constant current i and second has no current. If current in first coil dies out in very short time, magnitude of charge which will move in second coil is a (resistance of each coil is R)
(a) $\frac{M i}{R}$

(b) $\frac{2 M i}{R}$
(c) $\frac{M i}{2 R}$
(d) None of these

$$
=\frac{M i}{R}
$$

Q.2) Two concentric and coplanar circular coils have radii a and $b(\gg a)$ as shown in figure. Resistance of the inner coil is R. Current in the outer coil is increased from 0 to i, then the total charge circulating the innercoil is:
$B=\frac{\mu_{0} i}{2 \pi b}$

$$
\begin{array}{r}
\phi=\frac{\mu_{0} i \pi^{\prime} a^{2}}{2 \pi b}=\frac{\mu_{0} i a^{2}}{2 b} \\
M=\frac{\mu_{0} a^{2}}{=} \begin{array}{r}
\mu_{0} a^{2} i \\
2 b R .
\end{array}
\end{array}
$$

(a) $\frac{\mu_{0} i a^{2}}{2 R b}$
(b) $\frac{\mu_{0} a^{2} a b}{2 R}$
(c) $\frac{\mu_{0} i \pi b^{2}}{2 R a}$
(d) $\frac{\mu_{0} i b}{2 \pi R}$
Q.3) A small square loop of wire of side 1 is placed inside a large square loop of wire of side $\mathrm{L}(\mathrm{L} \gg 1)$. The loops are coplanar and their centres coincide. The mutual inductance of the system is proportional to:
(a) l / L

$$
\begin{aligned}
& \text { field at Centra } \\
& \Rightarrow 4\left[\frac{m_{0} i}{\left.4 \pi\left(\frac{n}{2}\right)(s \ln 45+\sin 4 s)\right]}\right. \\
& \begin{array}{ll}
\text { (c) } L / l & \text { (d) } L^{2} / l
\end{array}
\end{aligned}
$$

$$
\varnothing=\frac{2 h_{d} i \sqrt{2} l^{2}}{\pi L}
$$

Q.4) Two circular coils can be arranged in any of the three situations shown in the figure. Their mutual inductance will be:

$$
M=\frac{\varnothing}{i}
$$

(b) maximum in situation (b)
(c) maximum in situation $(\mathrm{c}$)
(d) the same in all situations
Q.5)A short solenoid of length l_{1}, cross sectional area A_{1}, and no of turns per unit length n_{1} is placed at centre of long solenoid of length l_{2}, cross sectional area A_{2}, and no of turns per unit length n_{2}. Mutual inductance of solenoid will be
(b) $\mu_{0} A_{2} l_{2} n_{1} n_{2}$

$$
\phi=\left(\mu_{0} n_{2} i_{1}\right)\left(n_{1} l_{1}\right)
$$

(c) $\mu_{0} A_{1} l_{2} n_{1} n_{2}$

$$
M=A_{0} n_{1} n_{2} A_{1} l_{1}
$$

(d) $\mu_{0} A_{2} l_{1} n_{1} n_{2}$
Q.6) Two coils, $1 \& 2$, have a mutual inductance $=\mathrm{M}$ and resistances R each. A current flows in coil 1 , which varies with time as; $\mathrm{I}_{1} \xlongequal{=} \mathrm{kt}^{2}$, where k is a constant and ' t ' is time. Find the total charge that has flown through coil 2 , between $\mathrm{t}=0$ and $\mathrm{t}=$ T.

(a) $2 \mathrm{kMT}^{2} / \mathrm{R} \quad D \phi=M K t^{2} \quad$ (b) $A M T^{2} / 2 \mathrm{R}$
(c) $4 \mathrm{kMT}^{2} / \mathrm{R}$
at $t=0$ (a) $\mathrm{kMT}^{2} / \mathrm{R}$

$$
\begin{aligned}
a & =\left|-\frac{\Delta \phi}{R}\right| \\
& =\frac{M K T^{2}}{R}
\end{aligned}
$$

Q.7) Two coaxial solenoids are made by winding thin insulated wire over a pipe of cross-sectional area $\mathrm{A}=10 \mathrm{~cm}^{2}$ and length $=20 \mathrm{~cm}$. If one of the solenoids has 300 turns and the other 400 turns, their mutual inductance is ($\mu_{0}=4 \pi \times 10^{-7} \mathrm{TmA}^{-1}$)
(a) $2.4 \mathrm{p} \times 10^{-5} \mathrm{H}$
(b) $4.8 \mathrm{~T} \times 10^{-4} \mathrm{H} \quad 490+\mathrm{arma}_{2}^{2}$
(c) $4.8 \mathrm{TI} \times 105 \mathrm{H}$
(d) $2.4 \times 10{ }^{-4} \mathrm{H}$
Q.8) If we increase no of turns in a coil to n times, self inductance will increase to
(a) n times
(b) n^{2} times
(a) n^{3} times $D A B N B A=M_{1} i \quad \forall=(N n)(n B) A=M_{2} i$
(b) n^{4} times
Q.9) Two identical solenoids are placed coaxially at large separation r from each other. Each solenoid has no of turns per unit length n and length 1 and cross sectional area A . mutual inductance of solenoids is
(a) $\frac{\mu_{0} n^{2} l^{2} A^{2}}{2 \pi r^{3}}$
(c) $\frac{\mu_{0} n^{2} l^{2} A^{2}}{4 \pi r^{3}}$

(b) $\frac{\mu_{0} n^{2} l^{4} A^{2}}{2 \pi r^{2}}$
(d) $\frac{\mu_{0} n^{2} L^{2} A^{2}}{2 \pi r^{2}}$

$$
\begin{aligned}
& B=\left(\frac{h_{0}}{4 \pi}\right) \frac{2 M}{\gamma^{3}} \\
& B=\frac{l_{0} n i A l}{2 \pi \gamma^{3}}
\end{aligned}
$$

Q.10) Two coils are at fixed locations. When coil 1 has no current and the current in coil 2 increases at the rate $15.0 \mathrm{~A} / \mathrm{s}$ the e.m.f. in coil 1 in 25.0 mV , when coil 2 has no current and coil 1 has a current of 3.6 A , flux linkage in coil 2 is-

(a) 16 mWb

$\varepsilon=M \frac{d i}{d t}$

(b) 10 mWb

$=6 \mathrm{~m} W 6$
(c) 4 mWb
(d) 6 mWb

$$
\begin{aligned}
M & =\frac{25}{45} m \\
& =5 / 3 m
\end{aligned}
$$

Q.11) A long straight wire is placed along the axis of a circular ring of radius R. The mutual inductance of this system is-

Q.12) A solenoid of self inductance L is devided in to two equal parts to make two solenoids. Self inductance of one part
(a) is equal to $L / 2$
(b) is less than L/2
(c) is greater than $E / 2$
(d) Noneof these

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/10
4
https://youtu.be/qy_2yWS-yZY
https://physicsaholics.com/note/notesDetalis/65

Chalo Nikis

